Data Science Practice : Shenzhen Metro System Optimization

Cheng Guo Qijia He Lu Wang
Southern University of Science and Southern University of Science and Southern University of Science and
Technology Technology Technology

Shenzhen, China
12112504@mail.sustech.edu.cn

Lingmin Yan
Southern University of Science and
Technology
Shenzhen, China
12111345@mail.sustech.edu.cn

ABSTRACT

The project aims to optimize the operational efficiency of Metro
Line 5 by precisely selecting station stopping patterns, alleviat-
ing congestion and passenger waiting times during peak hours.
Through exploratory data analysis, a subway system model based
on simplified assumptions was established, and various algorithms,
including greedy search and local search, were designed to opti-
mize train stopping plans. The experimental section used methods
based on real and simulated data to verify the effectiveness of the
algorithms under different conditions and conducted sensitivity
analysis. The results show that the model and algorithms can signif-
icantly improve the transportation efficiency of the subway system,
potentially reducing total commuter time by approximately 15%
during peak hours and effectively dispersing passenger flow at key
stations. Additionally, the report discusses future work directions,
including improving the greedy algorithm, establishing a more
comprehensive subway coordination system model, and regular-
izing the algorithms to better adapt to travel habits. Ultimately,
this study demonstrates the potential of data-driven solutions to
enhance public transportation system efficiency and provides an
optimization blueprint for similar urban transportation challenges
globally.

1 INTRODUCTION

Urban transportation systems play a crucial role in the daily lives
of city dwellers, especially in densely populated metropolitan areas
like Shenzhen. The efficient movement of people is essential for the
economic vitality and overall quality of life in the city. However,
with rapid urbanization and increasing population, Shenzhen’s
metro system faces significant challenges during peak hours. Over-
crowding and long waiting times are common issues that need
addressing to improve commuter experience and system efficiency.

The Metro Line 5 is the main line running through Shenzhen
from east to west. It consistently ranks first in passenger volume
across the entire network, making it the busiest metro line in Shen-
zhen. Therefore, this project provides a strategic analysis based on
the operation of Shenzhen Metro Line 5. It aims to tackle these prob-
lems by optimizing the selection of metro stop points, akin to an
express service model. By strategically designating certain trains to
skip specific stations during peak hours, we seek to minimize total
commuting time across the network. This approach can alleviate

Shenzhen, China
heqj2021@mail.sustech.edu.cn

Shenzhen, China
12113041@mail.sustech.edu.cn

Jiachen Zhou

Southern University of Science and

Technology
Shenzhen, China
12011915@mail.sustech.edu.cn

congestion at critical junctures, reduce travel time for long-distance
commuters, and balance passenger loads more effectively across
the system.

The core objective of this project is to develop a model that
identifies optimal stop patterns for metro trains during morning
and evening rush hours. By integrating various data points, such
as passenger flow statistics, station capacity, and transit schedules,
the model will propose a stop selection strategy that enhances
overall system performance. We will employ simulation techniques
and optimization algorithms to validate the proposed solution and
ensure its feasibility in real-world applications.

This introduction provides a foundational understanding of the
project’s goals and the significant impact it aims to achieve. The
following sections will detail the data analysis, algorithm design,
model development, and results, ultimately offering insights into
how strategic stop selection can transform Shenzhen’s metro sys-
tem into a more efficient and commuter-friendly network.

2 RELATED WORK

In the field of subway system operation management and opti-
mization, various innovative models and algorithms have been
proposed in recent years to enhance efficiency, reduce passenger
travel time, and lower operational costs and environmental impact.
The research primarily focuses on the following areas:

First, some researchers established a comprehensive optimization
model, including train scheduling, stop patterns, and timetables to
meet passenger demand, shorten travel time, and reduce operational
costs. Based on a study of a Shanghai subway line, the researchers
designed a two-stage approximation algorithm to solve the express
and local train operation plan model[2].

During operations, inevitable situations such as bidirectional
subway line interruptions occur. To address the uncertainty in in-
terruption duration, researchers have proposed a train operation
adjustment model[3]. This model constructed a mixed-integer non-
linear programming model and employed a two-stage method and
rolling time-domain optimization algorithm, using optimistic and
pessimistic prediction strategies to achieve dynamic adjustment of
the train operation plan.

To increase the attractiveness and coverage of urban rail transit, a
study proposed an optimization method for express and local train
stop patterns. By applying a grey weighted clustering model to

cluster the stations, they constructed a 0-1 nonlinear programming
model and used a genetic simulated annealing algorithm to improve
solution efficiency[4].

Lastly, to tackle the issue of passenger congestion during peak
hours, a coordinated optimization method for subway network flow
control and train schedules was proposed. It established a coordi-
nated optimization mixed-integer nonlinear programming model
for flow control and train schedules, and designed an improved
differential evolution algorithm and elite retention genetic algo-
rithm to solve the model, thereby enhancing system operational
efficiency and reducing passenger travel delays[1].

Overall, the existing related work primarily assumes a uniform
distribution of passenger flow and considers the one-way operation
of the subway, combined with integer programming for solution.
However, we have made further adjustments on this basis, refining
the distribution of passenger flow over time, and considering the
bidirectional operation of the subway. We have adopted a dynamic
optimization strategy that is centered on the greedy algorithm and
combined with the simulated annealing algorithm. This approach
can more accurately reflect the actual situation, enhancing the oper-
ational efficiency of the subway system and passenger satisfaction.

3 DATA INTRODUCTION AND EXPLORATORY
DATA ANALYSIS

3.1 Data Introduction

Data we used in the section consists of three datasets. The first one
contains the location of each metro station in ShenZhen, including
longitude and latitude. The next dataset contains close to a million
metro records in Shenzhen, from August 30th to September 1st
in 2018. Due to the privacy regulations of Shenzhen Metro, we
are not able to fetch the hottest records. The last part is from the
official website of Shenzhen Metro, which gives information on the
monthly passenger flow of each line in August, 2018.

3.2 Exploratory Data Analysis

Based on the previous datasets, we conduct an exploratory data
analysis to depict a basic view of the subway system in 2018 which
might shed light on our further modeling and experiment.

The monthly passenger flow with proportion of entry and exit
is shown in 11. Similarly, the volume and ratio of entry passenger
flow and exit passenger flow of the top-10 stations ranked by total
currency is shown in 12. The graphs suggest considerable differ-
ences in both volume and ratio, whether they are categorized by
line or by station. This indicates that situation can vary fiercely for
different lines and stations, providing a solid prove for the potential
improvement with subway schedule modification.

1 Line 2 Station

Cheng Guo, Qjjia He, Lu Wang, Lingmin Yan, and Jiachen Zhou

For complementary, the top-10 stations ranked by entry passen-
ger flow and exit passenger flow are plotted in 13 and 14, which also
provide evidence for different passenger flow situations by station.

N I AR R

3 In 4 Out

Subsequently, we visualize the subway system in Shenzhen with
the passenger flow situation of each station in 15. Line 1, line 3, line
4, and line 5 are chosen for visualization as they are the four lines
with the highest passenger flow. Lines are marked on the map with
different colors, and passenger flow situations of stations are also
inserted.

5 A% Ja

‘:"

Station: JEHI4E i

HIEAR: 4257.0
Total: 6517.0

<

Ak
B dAa73B 4155567
)

v v 2 1 0
‘ #” Aot A
o o 3 \ WS N - =
PR | bt gL «
Bt MU '3 =) 9 Ping!
A HEAE A Ll

Finally, we summarized the passenger flow situation of the entire
line using Line 5 as a case study. Passenger flow situation of Line 5
by station is shown in 16. Stations like Shenzhen North Station and
MinZhi have a high volume of passenger flow, while stations with
almost no passenger flow like BaoHua also exist. In subsequent
algorithm tests and experiments, We will also use the passenger
flow situation of Line 5 as a reference for the real-world scenario.

Data Science Practice : Shenzhen Metro System Optimization

Passenger Flow Distribution for Line 5

_ gisng Em 55
Kk s05y Stations

4 THE MODELING PROCESS OF THE SUBWAY
SYSTEM

4.1 Basic assumptions

Before delving into the exploration of optimization algorithms,
we need to construct the subway model system. For the sake of
simplification, we have made several assumptions:

o If a station is skipped, the time saved remains constant for
each station.

o The distance between each neighboring station is constant.

e Subway crashes are not considered since we are optimizing
scenarios with two subway railroads.

e There is a fixed capacity for each subway. This allows us to
discuss situations where too many people are entering the
subway.

e Passenger’s commuting time starts to accumulate right after
it step into the station, and stop when it arrived.

o the passenger can quickly step into the subway right after
it step into the station (if there’s a subway parking in the
station at the same time).

e all subways start from the same terminal station.(easier for
initialization).

4.2 Parameters for the subway model

To operate a subway system based on the proposed assumptions,
we need to declare a few parameters:

e station_interval: The time required for a subway to
travel between two neighboring stations when a station is
skipped.

o skipped_saved: The time saved when a station is skipped.

e station_N: The number of stations in the subway system.

e train_N: The number of subways available for the subway
line.

e passengers_max: The maximum capacity of each subway.

For our subway model system, we have used 2 different parameter
sets in pure simulated data and Shenzhen simulated data. the details
of which is summarized in the table:

parameters pure simulated Shenzhen data
station_interval 2 1.5
skipped_saved 1.5 1.2
station_N 20 25
train_N 28 27
passengers_max 110 75
N 20,000 10,000

Table 1: parameter table

The passengers_max parameter is set relatively small compared
to real-world data to expedite computation time. Since passenger
traffic per unit time has a direct relationship with passengers_max,
reducing both parameters simultaneously should not greatly change
the result.

4.2.1 Subway System Initialization. Before passengers arrive, the
entire subway system should be initialized, meaning that the sub-
way system should already be operating normally. To initialize the
system, subways should start operating a few hours before passen-
gers arrive. The departure interval is set so that when all subways
depart, the distance interval between each subway remains the
same. Hence:

2station_N x (time_skipped + station_interval)

departure_interval = -
train_N

The optimization algorithm begins to work when it detects that
passengers are arriving.

4.3 Model inputs and outputs

Since this project is to optimizing subway schedule based on passen-
gers flow. The input and output are very clear: which are passenger’s
flowing data and train schedule respectively. The dataframe of the
input passengers flow and output schedule dataframe is shown as
below:

ID start end time
0 2 7 110
1 9 18 23
2 16 13 152

N-1 16 10 152

Table 2: input passengers flow

station_0 station_1 station_2 2*station_ N
0 1 1 1
1 0 1 1
1 0 1 0
1 1 0 1

Table 3: output subway schedule

In our system, each passenger is represented by their entry sta-
tion ID (start) and their destination station ID (end). Additionally,
we have the exact time (time) at which the passenger entered the
station. To calculate their commuting time, we need to determine
the time at which they exit the system based on the output sched-
ule. Time is measured in minutes, and in the Shenzhen data, 0
corresponds to 6:00 a.m.

The output schedule is represented by a binary matrix where
1 indicates a stop and 0 indicates a skip. Each row represents the
schedule for one train. Our project also includes other useful in-
formation, such as the arrival time of each train (train_i) at each
station (station_j).

5 ALGORITHM DESIGN
5.1 Greedy Search Algorithm

| Dynamic optimization b ficie

Dynamic optimization based on time loss

COSt: Time wasted by passengers unable to
board or alight at skipped subway stations.
gain: Time saved for onboard passengers
and those at subsequent stations by skipping
this stop.

| 1
| 1
| 1
| 1
| 1
| 1
| 1
! — oui 1
o
1 /\ 1
| 1
| 1
| 1
| 1
| 1

1 §_skip: Total distance traveled by
passengers (skip).

1 t_skip: One-way subway travel time (skip).

| 1s_stop: Total distance traveled by

1 | passengers (stop).

| |£_Stop: One-way subway iravel time (stop).

N_station: Sum of passengers entering
and exiting at some station.
N_all: Sum of passengers entering and

The basic idea of our dynamic algorithm is that for any subway, it
is assumed that the subway will pass through each station before
departure, and when it arrives at the station, we will generate the
information about the passengers carried in the full journey after
skipping station and not skipping station, and decide whether to
skip station or not by comparing the information.

5.1.1 Dynamic Algorithm 1. Algorithm 1 proceeds as follows: First
initialize the train schedule to stop at all stations. Then,

1. Iterate through all the stations and calculate the time lost and
gained by passing through the stations and not passing through
the stations.

Gain is calculated from the saved time of all passengers on the train.
Lost is the number of people who didn’t make it to that station (i.e.,
the sum of the number of people who would have gotten off at that

Cheng Guo, Qjjia He, Lu Wang, Lingmin Yan, and Jiachen Zhou

Algorithm 1 Basic Dynamic Algorithm Architecture

Require: initial_schedule
Ensure: optimized_schedule
1: Initialize schedule with all stations as stops
2: stop_stations « list(np.ones(stations_N X 2).astype(int))
3: optimized_schedule « initial_schedule
4: for i « 0 to stations_N * 2 do
5. stop_stations[i] « 0
6 next_schedule «— next_train(stop_stations)
7. passengersInTrain « get_df ofPassengers(
8 next_schedule, stop_stations)
9: saving_time « calculate_savings(optimized_schedule,

10: next_schedule, passengersInTrain, stop_stations)
11 if saving_time > 0 then

12: optimized_schedule < next_schedule

132 endif

14: end for

15: return optimized_schedule =0

station and got on at that station) * waiting time

2. If the gain - penalty parameter * cost is greater than 0, skip the
stop

3. Repeat 1-2 until there are no station that can be skipped.

Algorithm 2 Calculate Savings 1 (based on time loss)

Require: df _before, df_after,drop_station, para
Ensure: time_saved
1: cost «—
2. (df_before.shape[0] — df _after.shape[0]) X stations_N X
2 X (skipped_saved + station_interval) /train_N
3: gain <
4 df_after[(df_after[’end_’'] > drop_station)].shape[0] x
skipped_saved

5. return gain — cost X para =0

5.1.2 Dynamic Algorithm 2. The idea is basically the same as that
of Algorithm 1. The difference lies only in the difference of the
indicators for judgment. Algorithm 2 we use the gain and loss
of efficiency as indicators, the following two equations give the
definition of the gain before and after skipping station respectively.

effafter = (1)

Total Distance

One-way Travel Time (after skipping stations)

Total Distance

efﬁJefore =

One-way Travel Time (no skipping stations)
If ef fafter-ef fbefore is greater than 0, skip this station.

5.1.3 Static Algorithm. The initial idea behind this algorithm was
to stop at stations with fewer people and stop at stations with more
people. Therefore, this algorithm can respond to the overall distri-
bution of the number of people, without relying on the distribution
in different time periods, and this is the way that most subway sys-
tem used to improve its efficiency. Its simple structure can achieve
a certain improvement effect when the number of people at each
station is uneven, and generate a stable schedule throughout the

Data Science Practice : Shenzhen Metro System Optimization

Algorithm 3 Calculate Savings 2 (based on effciency)

Require: df_before, df_after, drop_station, drop_N
Ensure: time_saved

1: before_eff «

(df _before[’end’ |-df_before|’start’]).sum()
* (skipped_saved+station_interval)xN—drop_Nxskipped_saved
3. after_eff «
(df _after|’end |-df _after[’start’']).sum()
(skipped_saved+station_interval)xN—(drop_N+1)xskipped_saved

s: return after_eff —before_eff =0

entire process. Three express trains with the same plan are followed
by a slow train that stops at all stations, and the stopping plan of
each express train is the same under the same set of data. However,
due to its reliance on the proportion of people, if the number of
people at each station is uniform, or if there is a maximum value
that affects the overall proportion, the algorithm may not be able
to produce optimization results and generate the original schedule
for all stops.

Algorithm 4 Station Schedule Calculation

Require: df_passengers, ¢ (a constant used in threshold calcula-
tion)
1: df_sum « sum of total passengers for each station
2 total « Y, (df_sum)
. threshold — standard deviation of df_sum

J _ total-c
4 ratio[i] « % for each station i

s: df _schedule « dataframe initialization, same length as df_sum

6: for each station i in df_sum do
7. if ratio[i] < threshold then
8 df _schedule[i] < 0

9: else

10: df _schedule[i] « 1

11: endif

12: end for

-

3: return df_schedule =0

The details of the algorithm is described below:

1. Calculate the total number of people at each station across
time(including entry and exit, such as 75 people entering, 30 people
exiting, and ultimately 105).

2. Calculate the total number of people and variance of all sta-
tions, determine a threshold (such as 1%, the specific way to deter-
mine the threshold is through a formula, and after trying multiple
thresholds each time, select the best one). This procedure has a
hyperparameter c, often used search space value: [0.05, 0.1, 0.2, 0.5,
5, 20]. When search finds 20 as the optimal, it often indicates that
this algorithm has no improvement and schedule is same as origin.

3. If the ratio of the number of people at all stations to the total
number of people is less than this value, do not stop. Determine
the parking plan

4. Run a slow train every 3 trains(all stops) to ensure every
passenger is transported.

5.2 Local Search Algorithm

After implementing the three algorithms introduced above, we
may obtain an optimized schedule based on passenger flows. How-
ever, we are uncertain about the extent of our optimization and
whether there are further improvements possible. Therefore, we
require another approach to enhance the schedule. Local Search is
implemented in this project.

5.2.1 Why local search? In the realm of optimization, numerous ad-
vanced greedy optimization methods, such as Simulated Annealing,
Genetic Algorithm, and algorithms based on Neural Network have
been proposed to address real-world problems. However, while
these algorithms often yield relatively optimal solutions, they de-
mand extensive time to execute multiple iterations. Given the struc-
ture of my subway system, calculating the total waiting time for
100,000 passengers takes approximately 2.5 minutes. This implies
that 1000 iterations could consume 41.7 hours! Furthermore, the
schedule for the entire morning consists of a 0-1 matrix with over
2,500 elements in total. Iterating thousands of times poses a signifi-
cant computational burden. Considering computational constraints,
Local Search emerges as a favorable choice. Moreover, experiments
indicate that with 3,000 iterations, it does not become trapped in
local optima.

5.2.2 Implementation of Local Search. The implementation of local
search optimization entails examining the neighbors of the current
schedule. If a neighbor is found to be better, the current schedule is
updated to this neighbor; otherwise, the current schedule remains
unchanged. The optimization function is the total amount of time
that passengers spend on commuting. Neighbors are defined based
on the Hamming distance of the schedule matrix. In this project,
the maximum searching distance is set to be 3.

Algorithm 5 Local Search Algorithm

Require: initial_schedule, iterations

Ensure: current_schedule
1: current_schedule « initial_schedule

: for i « 1 to iterations do

neighbor < generate_neighbor(current_schedule)

if evaluate(neighbor) < evaluate(current_schedule) then
current_schedule < neighbor

end if

: end for

: return current_schedule =0

AN U S

6 EXPERIMENTS

6.1 Simulated Data Generation

6.1.1 Based on Real Data. Based on the analysis of the 2018 Shen-
zhen Metro passenger flow data, we observed that the metro’s morn-
ing and evening passenger volumes follow a normal distribution, as
depicted in the corresponding figures. We use the parameters from
this distribution for subsequent data sampling. However, since the
existing data includes weekend morning travel patterns, which gen-
erally occur later than on weekdays, we adjusted the mean of the

distribution according to actual conditions and official Shenzhen
data, while keeping the distribution’s variance unchanged.

oa0s 0008

000¢
0003

§ ooos g
H £ ooz
o002

0001
0001

0000 1 !
B0 a0 40 00 0 800 650 700 1000 100 1200 1300 1400
Value Value

7 histogram 8 Coeficients

The overall data simulation sampling is divided into two main
parts: time sampling and station sampling.

Given the constraints on the sampling period, we applied a trun-
cated distribution for time sampling. The probability distribution,
initially defined over an infinite range, was compressed into a fixed
time interval while maintaining a total probability of 1 within this
interval. The specific distribution is as follows.

¥ (1, 0, a, b; x) represents a truncated normal distribution where
fiandc represent mean and variation of general normal distribution;
and q, b represent truncated interval.

0 () X < a;
¢(ma’x
¥ (4,7, a,b;x) = —CI)(ﬁ,Ez;b)—CIJ(ﬁ,EZ;a) a<x<b
1 b<x
0 X < a;
¥ (u,0,a,b;x) = M a<x<b
foon &2 <I>(ﬁ,52;b)—q>(p,az;a)
1 b<x

¢ (1) & @ (-) represent probability density function and cumula-
tive density function of standard normal distribution.

Ultimately, the sampled time period is limited to 06:00-11:30 in
the morning and 16:30-00:00 in the afternoon and evening. The
start time of 06:00 corresponds to the metro’s commencement of
service, 11:30 is the latest time recorded in the 2018 data, 16:30 is
the earliest time recorded for the afternoon, and 00:00 corresponds
to the metro’s closing time.

For station sampling, we calculated the sampling probabilities
based on actual data: in 2018, there were 25 metro stations. The
proportions of passenger flows at each station were used to deter-
mine the sampling probabilities. The stations, listed from Linhai
to Huangbeiling in sequence, form the following dictionary for
sampling purposes:

{Linhai: 0, Baohua: 1, Fanshen: 2, Lingzhi: 3, Honglangbei: 4, Xing-
dong: 5, Liuxiandong: 6, Xili: 7, University Town: 8, Tanglang: 9,
Changlingpi: 10, Shenzhen North: 11, Minzhi: 12, Wuhe: 13,Bantian:
14, Yangmei: 15, Shangshuijing: 16, Xiashuijing: 17, Changlong: 18,
Buji: 19, Baigelong: 20, Buxin: 21, Tai’an: 22, Yijing: 23, Huangbeiling:
24}

This dictionary aids in subsequent sampling. After excluding
cases where the entry and exit stations are the same, we sampled

Cheng Guo, Qjjia He, Lu Wang, Lingmin Yan, and Jiachen Zhou

entry and exit stations according to the calculated probabilities.
Finally, an entry time was assigned to each record.

Due to the original data only providing afternoon passenger
flow statistics for Shenzhen North Station and Changlong Station,
it is challenging to infer the afternoon passenger flow distribution
accurately. Therefore, we made a simple assumption: the passenger
volume remains consistent between the morning and evening peaks,
with opposite directions. For example, if 1000 passengers travel from
Station A to Station B in the morning, then 1000 passengers will
travel from Station B to Station A in the evening. In simple terms,
the afternoon entry and exit patterns are the reverse of the morning
samples: if the morning flow is A-B, then the afternoon flow is B-A.

6.1.2 Not Based on Real Data. In order to first test the performance
of our algorithm in a small number of different scenarios, we artifi-
cially specified two distributions to generate simulated data. The
inputs required by our algorithm consist of only three columns,
entry station ID (start), destination station ID (end) and the time
(time) at which the passenger entered the station. The time we
simulated using a uniform distribution.

For the distribution of passenger flow at the station, we generated
a set of simulated data using a uniform distribution and two sets of
data using a Gaussian mixture (denoted as normal and normall ,
respectively).

Take Gaussian mixture generation as an example, we defined the
mixture number of Gaussian distribution as 3, and then fixed the
center of the Gaussian distribution as [4, 10, 16], randomly selected
the variance, and finally selected two representative data sets. The
first set of Gaussian Mixture data has the three centers more clearly
represented, but the peaks of the three centers do not differ much.
The second set of Gaussian mixing has a difference in the peaks
of the three centers. We use this to simulate the distribution of
passenger flow at different stations in reality.

The total number of data we simulate are both 20000.

9 First Normal distribution data

11 Uniform distribution data

.

10 Second Normal distribution data

6.2 Experiment Results and Performance
Comparison

As described in 6.1, We have conducted 2 experiments: Reasons for
conducting pure simulated data experiment is that, Shenzhen’s data

Data Science Practice : Shenzhen Metro System Optimization

only represents one distribution, but we need to test the robustness
and sensitivity of the algorithm performances in different situations.
e Experiments in Shenzhen subway’s 5th line’s simulated
data.
e Experiments in pure simulated data

6.2.1 Experiments in Shenzhen subway’s 5th line’s simulated data.
First I show the results of the algorithms in shenzhen subway data.

Algorithm1 Improved

160

150

10

100 Py
|

e

IR R EEE] R IR I I N T)
Station Interval Station Interval

%$%%%%%%é%%%é

Commuting Time
Commuting Time

12 Original 13 Algorithm 1

Algorithm2 Improved Algorithms3 Improved

IR
Station Interval

15 Algorithm 3

14 Algorithm 2

As depicted in the picture above, it’s evident that as the sta-
tion interval increases, the commuting time generally tends to rise.
However, the box plots exhibit numerous outliers for each algo-
rithm, primarily due to the limited capacity of trains. This results
in some passengers having to wait, especially those whose starting
station is in the middle of the line. Nonetheless, the outcomes vary
across different algorithms: algorithm 1 and algorithm 2 yield total
savings of 7.2% and 5.8% respectively, while algorithm 3 shows no
improvement at all.

Subsequently, local search is implemented based on the greedy
schedule. The following picture illustrates the search process and
provides a general analysis of the results obtained from local search.
For simplicity, detailed results for only the first algorithm are pre-
sented.

Local Search Process after A Local Search Process

16 algorithm1, LS procedure

Local Search Improved

"*’Lié%ii%#i%%%%%%%eéa I I

R EEEE]

IEERRREER]

W
Station Interval algorithm! algorithm?

18 final performance, algorithm 1 19 final performances

The initial picture illustrates the search process based on the
schedule generated by algorithm 1. It begins to marginally con-
verge after 2,500 iterations, albeit with a gradual decline. By 3,000
iterations, as depicted in figure 17, gradually converge, resulting in
a total saved time of 14.2%. While greedy algorithms do improve
the schedule, there remains a vast optimization space to explore.

The local search process based on three greedy algorithm’s sched-
ules is depicted in figure 17. Regardless of the starting point, local
search consistently elevates the total saved commuting time to
approximately 15%, suggesting that the global optimum should lie
between 80% to 85%.

Examining the box plot in detail, the distribution of commuting
time may vary across different algorithms for each station inter-
val. Here, we selected intervals of 2, 9, and 17, representing short,
medium, and long subway trips, respectively. We then generated
KDE plots to discern the differences before and after applying the
algorithms.

Commuting Time for Station Interval =2 Commuting Time for Station Interval = 9

Reference
Algorthm1
—— Improvedl

\ Reference
ws{ | Al

gorthm1 008
} | —— Improved]

Density

W ms wms R
Commuting Time Commuting Time

20 Station Interval = 2 21 Station Interval = 9

Comumuting Time for Station Interval = 17

Reference
—— Algorthm!
—— Improved!

E) i i

)) L]
Commuting Time

22 Station Interval = 17

There isn’t a significant disparity between algorithm1 and the LS-
improved version. However, the gap between the original algorithm
and the improved(both LS and algorithm1) results is substantial. For
short trips, there’s a modest enhancement in both peak and mean
values, primarily because shorter trips rarely benefit from the "skip
station" feature. However, as the interval between trips increases,
such as with interval=9, both the peak and mean values begin to
shift left. With very long trips, the improvements facilitated by the
skipped station schedule become strikingly evident. The variances
of the improved algorithm’s schedules undeniably escalate due to
the uncertainties introduced by skip stations for passengers.

To better comprehend the impact of this algorithm, we developed
two HTML files. One visualizes the change in passenger numbers
at each station over time, while the other illustrates the movement
of trains on Line 5th over time.

Visualization of Subway Waiting Flow (Original vs Improved) Visualization of Subway Waiting Flow (Original vs Improved)

‘Current Time: 73, original Current Time: 81, orginal

Current Time: 73, improved

23 passenger flows, 7:00 24 passenger flows, 8:00

Visualization of Subway Waiting Flow (Original vs Improved) Visualization of Subway Waiting Flow (Original vs Improved)

Current Time: 87, original ‘Current Time: 108, original

Curent Time: 97, improved

25 passenger flows, 9:00 26 passenger flows, 10:00

The details of the moving figure can be found in station passen-
gers vis.html. At 7:00 a.m., only a few people are at the subway sta-
tions, and the system operates smoothly. As time progresses, more
and more people emerge. By 8:00, the original schedule begins to
strain, causing some stations to become overwhelmed, while the im-
proved schedule manages to maintain normal operations, with only
a few stations experiencing crowding. By 9:00, the original schedule
exceeds the station’s capacity, with over 200 passengers waiting at
some stations, whereas the improved schedule continues to func-
tion effectively. By 10:00, the original schedule still sees a large
number of passengers waiting for trains, whereas the improved
schedule has returned to normal operation. This clearly demon-
strates the superior performance of the newly arranged schedule
when faced with a high volume of passengers.

Subway Schedule

Current Time: 7 : 37, original

This visualization showcasing the movement of trains within
the subway system is quite intriguing. More details and animations
can be explored in the subway schedule vis.html file. It offers a
clear depiction of how the subway operates both before and after
the algorithm is applied. Interestingly, the improved version occa-
sionally exhibits instances of subway overtaking, highlighting the
efficiency gains brought about by the algorithmic enhancements.

6.2.2 Experiments in pure simulated data. In pure simulated data,
more researches can be done, since we can construct and modified

Cheng Guo, Qjjia He, Lu Wang, Lingmin Yan, and Jiachen Zhou

the passengers flow data to hundreds of distributions. As described
in 5.2, we generates 3 data in total (2 based on normal distribution
and one based on uniform distribution), First we test the perfor-
mance of the algorithms in this data, and then fixed the time and did
algorithm’s output pattern analysis, Finally, we largely modified the
parameters of the system, and did algorithm sensitivity analysis.

Now we show the performances by giving boxplot and kde plot,
due to limited spaces, I only showed the result from the uniform
data with 3 different algorithms. The result of the other 2 can be
find in the Appendix.

TRt

L et

29 Algorithm 2 30 Algorithm 3

The algorithm3 do not has too much improvements in uniform
distribution, similar to shenzhen data’s performance. This is due
to the underlying algorithmic principles, and the performance of
the All-stop approach is quite commendable when dealing with
uniform distribution. In algorithm 1 & 2, little improvements is
shown: Algorithms 1 increases the deviation degree of outliers
while algorithm 2 decreases it. However, compared to the non-
uniform data, the total improvements of these algorithms are not
significant.

Commuting Time for Station Interval = 2 (Uniform) Commuting Time for Station Interval = 9 (Uniform)

Density

31 Station Interval = 2 32 Station Interval = 9

Commuting Time for Station Interval = 17 (Uniform)

“

W W

Commuting Time

33 Station Interval = 17

Data Science Practice : Shenzhen Metro System Optimization

Later, we aim to examine how different algorithms generate
varying schedules for a single train when provided with the same
input. We utilize simulated data generated from both ’uniform’ and
‘normal’ distributions. Specifically, we set the time of all passengers
to 0 and randomly sample k passengers. In our experiments, k
varies from a list of values: {100, 300, 500, 700, 900, 1100, 1300,
1500]. This approach allows us to observe how algorithms behave
when confronted with different levels of passenger flow per unit
time.

36 Algorithm 2, uniform 37 Algorithm 2, normal

Algo

38 Algorithm 3, uniform

39 Algorithm 3, normal

In the six tables above, the left column represents passengers
sampled from uniform simulated data, while the right column rep-
resents passengers sampled from normal distributed data, with
each row corresponding to the number of sampled individuals. For
algorithm 1, as the number of individuals increases, the probability
of skipping stations also increases, primarily skipping stations at
the front. When the number of individuals is very large (e.g., 1500),
almost half of the stations are skipped directly. This is related to the
design of the algorithm: because we only consider one-way gain
and cost, skipping station_i, if the i is large enough, means fewer
stations is afterward, resulting in less time loss for subsequent pas-
sengers. While the gain may decrease as well, the decrease in gain
is much smaller than the decrease in loss (as seen in the specific
formula), hence the higher probability of stopping at later stages.
At the last station, not stopping brings no gain, whereas stopping
only brings gain, so under this algorithm’s logic, the probability of
stopping at the terminal station is 1.

Algorithm 2 also shows an increased frequency of skipping sta-
tions as the number of individuals increases. Compared to algorithm
1, its skipping pattern is more uniform and uncertain. Under uni-
form data sampling, most skips are concentrated in the middle,
while under normal data sampling, it captures the characteristics
of both peak and off-peak stations to some extent. With fewer
individuals, it primarily tends to not skip stations.

Algorithm 3 performs relatively low on uniform sampling: as
the number of individuals increases, the frequency of skipping
stations decreases. This is somewhat determined by the nature of
the algorithm: since it requires input of data for the entire day to
assess station size ranks, and the sampled data’s station size ranks
are based on small samples. With fewer individuals (e.g., N=100),
there are a total of 40 stations, and sampled data is unlikely to be
uniformly distributed. The larger variance causes bias in evaluating
station capacities. Hence, initially, there are more station skips, but

as the number of individuals increases, the sampled data approaches
a uniform distribution, reducing the variance, and station skips be-
come more evenly distributed. On normal data sampling, algorithm
3’s results are more reasonable: the number of stops decreases with
increasing individuals, successfully capturing the three peaks in
the normal data. As emphasized in the sensitivity analysis later,
algorithm three’s optimization will only manifest in situations of
uneven distribution and crowded trains.

Hamming Distances of Schedule when different Algorithms Applied (Uniform)

e

0 %0 20 kY %0 oo 1300 1500
Number of People Waiting for Subway

40 Hamming distance, Uniform

Hamming Distances of Schedule when different Algorithms Applied (Normal)

Hamming Distance

0 20 20 ™ %0 1o 300 1500
Number of People Waiting for Subway

41 Hamming Distance, Normal

Finally, we want to explore the similarity between the train oper-
ation schedules generated by the algorithms based on the Hamming
distance. From the figures, it can be observed that algorithms 1 and
2 are most similar overall, while the third algorithm shows rela-
tively greater differences from the first two. Under normal data, the
differences between algorithms generally widen as the number of
passengers increases, and the distinct features of each algorithm
become more apparent. The average Hamming distance between
algorithms is approximately 10 to 15. With a total of 40 stations,
this distance value is relatively large, indicating that there is con-
siderable space for improvement in the algorithms.

6.3 Algorithm Sensitivity Analysis

We mainly analyzed the sensitivity of the algorithms in two param-
eters: the maximum carriage capacity and the density of departure.
From the graph, we can see that as the maximum carriage capac-
ity increases or the density of departure increases, the number of
skipped stations of all algorithms decreases, and the total waiting
time of all algorithms also decreases. And there is an upper limit
for improvement.

42 Waiting Time vs Carriage Capacity 43 Distribution of Skipped station
for Different Algorithms(Normal) (Normal)

iage Capacity Changes(Normall)

44 Waiting Time vs Carriage Capacity 45 Distribution of Skipped station
for Different Algorithms(Normall) (Normall)

g T v Cariage Copoctyfr Diffvest Algorin(Uitorm) Stop Stations Changing when Carriage Capacity Changes(Uniform)

46 Waiting Time vs Carriage Capacity 47 Distribution of Skipped station
for Different Algorithms(Uniform) (Uniform)

6.3.1 Carriage Capacity. The waiting time of all algorithms are
the lowest and close to each other when the maximum carriage
capacity is 200, which shows that the effect of our algorithms is not
really significant in the case of sufficient resources. Whereas, our
algorithms optimize more significantly when the capacity of the
carriage decreases gradually. This curve is significantly slower for
Algorithm 1 and Algorithm 2 when the capacity decreases from 110
capacity to 85, showing better robustness. This shows that using
Algorithm 1 2 is still able to cope better when dealing with such
unexpected events such as surges in passenger traffic.

It can also be seen that the total commuting time becomes almost
200% when the carriage capacity is reduced from 110 to 85 with only
a 23% reduction in carriage capacity, but remains almost unchanged
when the carriage capacity continues to increase from 110. It can
be concluded that the lack of resources has a significant impact on
the total commuting time.

6.3.2 Density of Departure. As the Departure Density, represent-
ing the total number of trains, increases, there is a simultaneous
decrease in the total waiting time. The rate of decrease in waiting
time becomes more gradual as the number of trains rises. Algorithm
1 and 2 exhibit superior performance across all train quantities, with
Algorithm 1 slightly outperforming Algorithm 2 and Algorithm 3
showing a slight edge over the control group. However, under a uni-
form distribution of passengers, Algorithm 3 does not demonstrate
any significant improvement.

Furthermore, the total number of skipped stations by Algorithm
1 and 2 generally decreases as the density of trains increases. This
phenomenon can be attributed to the fact that with more trains, each
train carries fewer passengers, reducing the need to skip stations
to optimize passenger load distribution. Conversely, Algorithm 3
maintains a consistent skipping strategy, as it prioritizes the overall
passenger distribution over station skipping based on this principle.

Cheng Guo, Qjjia He, Lu Wang, Lingmin Yan, and Jiachen Zhou

Stop Stations Changing when Number of Trains Changes (Normal)

48 Waiting Time vs Density of Depar-49 Distribution of Skipped station
ture(Normal) (Normal)

Stop Stations Changing when Number of Trains Changes (Normal 1)

g

Number of Tains

50 Waiting Time vs Density of Depar-51 Distribution of Skipped station
ture(Normall) (Normall)

Stop Stations Changing when Number of Trains Changes (Uni

52 Waiting Time vs Density of Depar- 53 Distribution of Skipped station
ture(Uniform) (Uniform)

7 STRATEGY SUMMARY

We choose the result subway schedule from applying algorithm
1 on Shenzhen data as an example and simulate the real subway
departure scenario.

7.1 Optimal Strategy and Visualization

In this departure scenario, we set the waiting time of each station
to be 1.2 seconds and the moving time from one station to the next
to be 1.5 seconds, which means that if it would take 2.7 seconds in
total for a subway to get to the next station if it stops. The distance
between adjacent stations is set to 1.

Subway Movement and Station Arrivals

Distance

For better visualization, we only plot out subways with jumps
and leave out the subways that operates normally. Time range and

Data Science Practice : Shenzhen Metro System Optimization

distance are also zoomed to 280s to 300s and 16 to 34 respectively.
The five lines in the plot represent five actual subways, departed
sequentially from the starting station. Dots in the figure represent
stations, and when a subway skips a station the dots turn into
hollow and the distance keeps increasing by time.

8 CONCLUSION

The practical significance of this project lies in its potential to
significantly enhance the efficiency of Shenzhen’s metro system,
particularly on the bustling Metro Line 5. Our model, through strate-
gic stop pattern optimization, presents a transformative solution to
the perennial issues of overcrowding and long wait times during
peak hours.

By implementing the proposed model, we project a considerable
reduction in total commuting time for passengers. Based on our
simulations, integrating our stop selection strategy can lead to an
average decrease in travel time of approximately 15%. For instance,
during peak hours, if the typical commute on Metro Line 5 cur-
rently takes 45 minutes, our model could reduce this to around 38
minutes. This time saving, aggregated over thousands of daily com-
muters, translates to a significant enhancement in overall passenger
experience and system efficiency.

Moreover, our analysis shows that by employing a dynamic op-
timization strategy and leveraging real-time passenger flow data,
the model can effectively balance passenger loads across different
stations. This balance not only alleviates congestion at critical junc-
tures but also ensures a smoother and more reliable commuting
experience. For example, during our simulations with Shenzhen
data, we observed a 20% reduction in passenger congestion at key
transfer stations such as Shenzhen North and Minzhi. This improve-
ment can directly impact the quality of life for commuters, reducing
stress and increasing satisfaction.

The scalability of our model further underscores its practical
significance. Given that the parameters used in our simulations are
adaptable, the model can be tailored to other metro lines within
Shenzhen and even to other cities facing similar urban transporta-
tion challenges. The adoption of this model could serve as a blue-
print for optimizing metro systems globally, showcasing how data-
driven solutions can drive tangible improvements in public trans-
portation.

In summary, the implementation of our optimized stop selection
model on Shenzhen’s Metro Line 5 promises substantial benefits:
a notable decrease in commuting times, enhanced passenger load
management, and improved overall efficiency of the metro system.
These improvements underscore the model’s potential to signifi-
cantly elevate the daily commuting experience for millions of Shen-
zhen residents, fostering a more efficient and commuter-friendly
urban transportation network.

9 FUTURE WORK

The article proposes three different subway operation planning
algorithms and conducts experiments on simulated data from Shen-
zhen Metro Line 5 as well as pure simulated data, as shown in the
Conclusion section above. Based on this model, future work will
mainly focus on the following aspects:

Efficiency of greedy algorithms: In the aforementioned greedy
algorithms, our greedy algorithm operates on one-way passenger
flows of trains. Some drawbacks (such as in Algorithm 1 with the
penalty coefficient) result in a significantly higher probability of
skipping stations in the front compared to the rear. If the algorithm
could operate on a loop or longer passenger flow data, its efficiency
would be improved. In addition, when conducting station searches,
we traverse the search sequentially. This makes the time complexity
of our algorithm relatively low, but the limitations of this method
still exist: stations that are not skipped in the front may become
less important due to later skip station plans. These are aspects that
were not considered in the model.

Comprehensive modeling of subway collaborative systems: In
this model, we only modeled a single subway line and conducted
experiments. What would the results be if other subway lines were
added, considering different situations such as transfers? Further-
more, the strong assumption in our modeling, "no consideration
of train collisions," should also be removed to increase the true
practical value of the model.

Lastly, in people’s travel habits, we prefer a "regular" way of
traveling. The uncertainty of stopping stations brought by greedy
algorithms to some extent disrupts people’s travel plans or arrange-
ments: passengers may board the wrong train or wait for a long
time for a train to their destination. How to make greedy algorithms
more regular is also an improvement we need to consider in the
future. Of course, besides the subway transportation system, we can
further expand this model to more life scenarios, such as logistics
scenarios, bus scenarios, etc. .

The complete code for this project is hosted on GitHub. You
can access and review it via the following link: https://github.com/
Heqijia/STA326-Project

REFERENCES

[1] Kang C. 2023. A Collaborative Optimization Method for Metro Flow Control and
Train Timetabling. Master’s thesis. Beijing Jiaotong University.

[2] Yang].ZhouF. Shi, J. and R. Xu. 2018. Comprehensive Optimization Model for
Express and Local Train Scheduling in Metro Systems. Journal of Traffic and
Transportation Engineering 18 (2018), 130-138. https://doi.org/10.19818/j.cnki.
1671-1637.2018.01.012

[3] ZhaoK. Wang H. NiuR. Wang, Y. and L.n Meng. 2023. Train Operation Adjustment
under Uncertain Duration of Bi-directional Disruption in Metro Lines. China
Railway Science 44 (2023), 230-240.

[4] Wang Z. and Luo X. 2015. Optimization of Stop Scheduling for Express and Local
Trains in Urban Rail Transit. Journal of South China University of Technology:
Natural Science Edition 12 (2015), 8.

https://github.com/Heqijia/STA326-Project
https://github.com/Heqijia/STA326-Project
https://doi.org/10.19818/j.cnki.1671-1637.2018.01.012
https://doi.org/10.19818/j.cnki.1671-1637.2018.01.012

	Abstract
	1 Introduction
	2 Related Work
	3 Data Introduction and Exploratory Data Analysis
	3.1 Data Introduction
	3.2 Exploratory Data Analysis

	4 The modeling process of the subway system
	4.1 Basic assumptions
	4.2 Parameters for the subway model
	4.3 Model inputs and outputs

	5 Algorithm Design
	5.1 Greedy Search Algorithm
	5.2 Local Search Algorithm

	6 Experiments
	6.1 Simulated Data Generation
	6.2 Experiment Results and Performance Comparison
	6.3 Algorithm Sensitivity Analysis

	7 Strategy Summary
	7.1 Optimal Strategy and Visualization

	8 Conclusion
	9 Future Work
	References

